Что такое тепловая мощность

Расчёт тепловой мощности, точный и упрошенный

что такое тепловая мощность

Начало выполнения подготовки проекта отопления, как жилых загородных домов, так и производственных комплексов, следует с теплотехнического расчёта. В качестве источника тепла предполагается тепловая пушка.

Что представляет собой теплотехнический расчёт?

Расчёт тепловых потерь является основополагающим документом, призванным решать такую задачу, как организация теплоснабжения сооружения. Он определяет суточное и годовое потребление тепла, минимальную потребность жилого либо промышленного объекта в тепловой энергии и тепловые потери для каждого помещения.
Решая такую задачу, как теплотехнический расчёт, следует учитывать комплекс характеристик объекта:

Зачем нужен теплотехнический расчёт?

  • Чтобы определить мощность котла. Предположим, Вы приняли решение снабдить загородный дом либо предприятие системой автономного отопления. Чтобы определиться с выбором оборудования, в первую очередь потребуется рассчитать мощность отопительной установки, которая понадобится для бесперебойной работы горячего водоснабжения, кондиционирования, систем вентиляции, а также эффективного обогрева здания. Определяется мощность автономной отопительной системы, как общая сумма тепловых затрат на обогрев всех помещений, а также тепловых затрат на прочие технологические нужды. Отопительная система должна обладать определённым запасом мощности, чтобы работа при пиковых нагрузках не сократила срок её службы.
  • Для выполнения согласования на газификацию объекта и получения ТУ. Получить разрешение на газификацию объекта необходимо в том случае, если используется природный газ в качестве топлива для котла. Для получения ТУ потребуется предоставить значения годового расхода топлива (природного газа), а также суммарные значения мощности тепловых источников (Гкал/час). Эти показатели определяются в результате проведения теплового расчёта. Согласование проекта на осуществление газификации объекта – это более дорогостоящий и продолжительный метод организации автономного отопления, по отношению к монтажу отопительных систем, функционирующих на отработанных маслах, установка которых не требует согласований и разрешений.
  • Для выбора подходящего оборудования. Данные теплового расчёта являются определяющим фактором при выборе приборов для отопления объектов. Следует учитывать множество параметров – ориентацию по сторонам света, габариты дверных и оконных проёмов, размеры помещений и их расположение в здании.

Как происходит теплотехнический расчёт

Можно воспользоваться упрощённой формулой, чтобы определить минимально допустимую мощность тепловых систем:

Qт (кBт/час) =V * ΔT * K /860, где

Qт – это тепловая нагрузка на определённое помещение; K – коэффициент теплопотерь здания;

V – объём (в м3) отапливаемого помещения (ширина комнаты на длину и высоту);

ΔT – разница (обозначена С) между необходимой температурой воздуха внутри и температурой снаружи.

Такой показатель, как коэффициент потерь тепла (К), зависит от изоляции и типа конструкции помещения. Можно использовать упрощённые значения, рассчитанные для объектов разных типов:

  • K = от 0,6-ти до 0,9-ти (повышенная степень теплоизоляции). Небольшое количество окон, снабжённых сдвоенными рамами, стены из кирпича с двойной теплоизоляцией, крыша из высококачественного материала, массивное основание пола;
  • К = от 1-го до 1,9-ти (теплоизоляция средней степени). Двойная кирпичная кладка, крыша с обычной кровлей, небольшое количество окон;
  • K = от 2-х до 2,9 (низкая теплоизоляция). Конструкция сооружения упрощённая, кирпичная кладка одинарная.
  • K = 3-х – 4-х (отсутствие теплоизоляции). Сооружение из металлического или гофрированного листа либо упрощённая деревянная конструкция.

Определяя разницу между требуемой температурой внутри обогреваемого объёма и температурой снаружи (ΔT), следует исходить из степени комфорта, которую Вы желаете получить от тепловой установки, а также из климатических особенностей того региона, в котором находится объект. В качестве параметра по умолчанию принимаются значения, определённые CHиП 2.04.05-91:

  • +18 – общественные здания и производственные цеха;
  • +12 – комплексы высотного складирования, склады;
  • + 5 – гаражи, а также склады без постоянного обслуживания.
Город Расчётная наружная температура, °C Город Расчётная наружная температура, °C
Днепропетровск — 25 Каунас — 22
Екатеринбург — 35 Львов — 19
Запорожье — 22 Москва — 28
Калининград — 18 Минск — 25
Краснодар — 19 Новороссийск — 13
Казань — 32 Нижний Новгород — 30
Киев — 22 Одесса — 18
Ростов — 22 Санкт-Петербург — 26
Самара — 30 Севастополь — 11
Харьков — 23 Ялта — 6

Расчёт по упрощённой формуле не позволяет учитывать различия тепловых потерь здания в зависимости от типа ограждающих конструкций, утепления и размещения помещений.

Так, например, больше тепла потребуют комнаты с большими окнами, высокими потолками и угловые помещения. В то же время минимальными тепловыми потерями отличаются помещения, которые не имеют внешних ограждений.

Желательно использовать следующую формулу при расчёте такого параметра, как минимальная тепловая мощность:

Qт (kВт/час)=(100 Вт/м2 * S (м2) * K1 * K2 * K3 * K4 * K5 * K6 * K7)/1000, где

Источник: https://www.Komplektacya.ru/spravochnik/teplovoe-oborudovanie1/raschet-teplovoj-moschnosti

Расчет мощности газового котла

что такое тепловая мощность

Многие собственники домов с удовольствием устанавливают в помещении газовые котлы для отопления и горячего водоснабжения, чтобы не зависеть от прихотей плохой погоды и подводных камней, сопряженных с работой коммунальных систем теплоснабжения.

В данной ситуации имеет большое значение — правильный выбор котельного оборудования, для чего потребуется знать, как рассчитать мощность газового котла.

Если она будет превосходить реальные теплопотери объекта, то часть затрат на выработку тепловой энергии, будут потеряны. А агрегаты с невысокой теплопроизводительностью не смогут обеспечить домовладение требуемым объемом тепла.

Что такое мощность газового котла

Производительность котлоагрегата или его мощность — это главнейший показатель теплового процесса, от которого напрямую зависит комфортабельность нахождения людей в обогреваемых строениях.

Мощность котлоагрегата — это величина тепловой энергии, передаваемая нагреваемой воде при сжигании энергоносителя в топочном устройстве.

Показатель измеряется в Гкал либо МВт. Для бытовых устройств в паспорте обычно указывается размерность в кВт. Для того чтобы понять физический смысл этого показателя, можно представить такие соотношения:

1 ГКал/час — это 40.0 м3 теплоносителя циркулирующего в течение часа и нагреваемого в котле на 25 С. Переводное соотношение между величинами:

1.0 ГКал = 1.16 МВт.
Расчет мощности газового котла можно получить по формуле:

Мо = (т1 — т2) * Рв/ 1000,
Где:

Рв — расход циркулирующей воды, м3/час;
т1 — т2 — разница Т воды на входе/выходе из котлоагрегата, С.

Теплопотери могут быть очень высоки

Образец расчета показателя мощности, который проводят перед тем, как выбрать котлоагрегат:

  • Т теплоносителя на подающей линии из котла — 60 С.
  • Т теплоносителя на обратной линии из сети в котел — 40 С.
  • Расход в сети — 1.0 м3/час.

Мо= (60-40)*1/1000=0.02 Гкал. * 1.16 = 0.0232 МВт = 23.2 кВт,

с округлением Мо = 24 кВт.

Многие пользователи, в целях экономии задаются вопросом, как уменьшить мощность газового котла. Из данного примера очевидно, что для того этого потребуется либо снизить перепад температур, либо площадь нагрева.

Вторая величина – постоянная, поэтому можно работать в направлении снижения перепада температур. Это можно выполнить при устройстве надежной системы теплозащиты дома.

Расчет мощности газового котла в зависимости от площади

В большинстве случаев используют ориентировочный подсчет тепловой мощности котлоагрегата по площадям нагрева, например, для частного дома:

  • 10 кВт на 100 кв.м;
  • 15 кВт на 150 кв.м;
  • 20 кВт на 200 кв.м.

Нужно учитывать, что данные нормативы были приняты еще в советские времена и не предусматривают уровень теплоизоляционных характеристик современных строительно-монтажных материалов.

Они также не применяемы в районах, климат которых значительно отличается от условий центральных регионов России и Подмосковья.

Подобные вычисления смогут подойти для не очень большого сооружения с утепленным чердачным перекрытием, низкими потолками, хорошей термоизоляцией, окнами с двойным остеклением, но не более того.

Источник: https://vteple.info/kotly/gazovye/rasschitat-moshhnost-kotla

Расчет системы отопления пример

что такое тепловая мощность

Мощность — это физическое определение скорости передачи или потребления энергии. Она равна отношению количества работы за определённый промежуток времени к этому периоду. Нагревательные устройства характеризуются по расходу электричества в киловаттах.

Для сопоставления энергий различного рода введена формула тепловой мощности: N = Q / Δ t, где:

  1. Q — количество теплоты в джоулях;
  2. Δ t — интервал времени выделения энергии в секундах;
  3. размерность полученной величины Дж / с = Вт.

Для оценки эффективности работы нагревателей используют коэффициент, указывающий на количество израсходованного по назначению тепла — КПД. Определяется показатель делением полезной энергии на затраченную, является безразмерной единицей и выражается в процентах.

По отношению к разным частям, составляющим окружающую среду, КПД нагревателя имеет неравные значения. Если оценивать чайник как нагреватель воды, его эффективность составит 90%, а при использовании его в качестве отопителя комнаты коэффициент возрастает до 99%.

Объяснение этому простое: из-за теплообмена с окружением часть температуры рассеивается и теряется. Количество утраченной энергии зависит от проводимости материалов и других факторов. Можно рассчитать теоретически мощность тепловых потерь по формуле P = λ × S Δ T / h. Здесь λ — коэффициент теплопроводности, Вт/(м × К); S — площадь участка теплообмена, м²; Δ T — перепад температур на контролируемой поверхности, град. С; h — толщина изолирующего слоя, м.

Из формулы понятно, что для повышения мощности надо увеличить количество радиаторов отопления и площадь теплоотдачи. Уменьшив же поверхность контакта с внешней средой, минимизируют потери температуры в помещении. Чем массивнее стена здания, тем меньше будет утечка тепла.

Гидравлический расчет

Итак, с теплопотерями определились, мощность отопительного агрегата подобрана, остается лишь определиться с объемом необходимого теплоносителя, а, соответственно, и с размерами, а также материалами используемых труб, радиаторов и запорной арматуры.

В первую очередь определяем объем воды внутри отопительной системы. Для этого потребуются три показателя:

  1. Общая мощность отопительной системы.
  2. Разница температур на выходе и входе в отопительный котел.
  3. Теплоемкость воды. Этот показатель стандартный и равен 4,19 кДж.

Гидравлический расчет системы отопления

Формула такова — первый показатель делим на два последних. Кстати, этот тип расчета может быть использован для любого участка системы отопления

Здесь важно разбить магистраль на части, чтобы в каждой скорость движения теплоносителя была одинаковой. Поэтому специалисты рекомендуют делать разбивку от одной запорной арматуры до другой, от одного радиатора отопления к другому

Теперь переходим к расчету потерь напора теплоносителя, которые зависят от трения внутри трубной системы. Для этого используются всего две величины, которые в формуле перемножаются между собой. Это длина магистрального участка и удельные потери трения.

А вот потери напора в запорной арматуре рассчитываются совершенно по другой формуле. В ней учитываются такие показатели, как:

  • Плотность теплоносителя.
  • Его скорость в системе.
  • Суммарный показатель всех коэффициентов, которые присутствуют в данном элементе.

Чтобы все три показателя, которые выведены формулами, подходили к стандартным величинам, необходимо правильно подобрать диаметры труб. Для сравнения приведем пример нескольких видов труб, чтобы было понятно, как их диаметр влияет на тепловую отдачу.

  1. Металлопластиковая труба диаметром 16 мм. Ее тепловая мощность варьируется в диапазоне 2,8-4,5 кВт. Разность показателя зависит от температуры теплоносителя. Но учитывайте, что это диапазон, где установлены минимальный и максимальный показатель.
  2. Та же труба с диаметром 32 мм. В этом случае мощность варьируется в пределах 13-21 кВт.
  3. Труба из полипропилена. Диаметр 20 мм — диапазон мощности 4-7 кВт.
  4. Та же труба диаметром 32 мм — 10-18 кВт.

И последнее — это определение циркуляционного насоса. Чтобы теплоноситель равномерно распределялся по всей отопительной системе, необходимо, чтобы его скорость была не меньше 0,25 м/сек и не больше 1,5 м/сек. При этом давление не должно быть выше 20 МПа. Если скорость теплоносителя будет выше максимально предложенной величины, то трубная система будет работать с шумом. Если скорость будет меньше, то может произойти завоздушивание контура.

Формула расчета

Нормативы расхода тепловой энергии

Тепловые нагрузки рассчитываются с учетом мощности отопительного агрегата и тепловых потерь здания. Поэтому, чтобы определить мощность проектируемого котла, необходимо теплопотери здания умножить на повышающий коэффициент 1,2. Это своеобразный запас, равный 20%.

Для чего необходим такой коэффициент? С его помощью можно:

  • Прогнозировать падение давления газа в магистрали. Ведь зимой потребителей прибавляется, и каждый старается взять топлива больше, чем остальные.
  • Варьировать температурный режим внутри помещений дома.

Добавим, что тепловые потери не могут распределяться по всей конструкции здания равномерно. Разность показателей может быть достаточно большой. Вот некоторые примеры:

  • Через наружные стены покидает здание до 40% тепла.
  • Через полы — до 10%.
  • То же самое относится и к крыше.
  • Через вентиляционную систему — до 20%.
  • Через двери и окна — 10%.

Итак, с конструкцией здания разобрались и сделали одно очень важное заключение, что от архитектуры самого дома и места его расположения зависят потери тепла, которые необходимо компенсировать. Но многое также определяется и материалами стен, крыши и пола, а также наличием или отсутствием теплоизоляции

Это немаловажный фактор.

К примеру, определим коэффициенты, снижающие теплопотери, зависящие от оконных конструкций:

  • Обычные деревянные окна с обычными стеклами. Для расчета тепловой энергии в данном случае используется коэффициент, равный 1,27. То есть через такой вид остекления происходит утечка тепловой энергии, равной 27% от общего показателя.
  • Если установлены пластиковые окна с двухкамерными стеклопакетами, то используется коэффициент 1,0.
  • Если установлены пластиковые окна из шестикамернного профиля и с трехкамерным стеклопакетом, то берется коэффициент 0,85.

Идем дальше, разбираясь с окнами. Существует определенная связь площади помещения и площади оконного остекления. Чем больше вторая позиция, тем выше тепловые потери здания. И здесь есть определенное соотношение:

  • Если площадь окон по отношению к площади пола имеет всего лишь 10%-ный показатель, то для расчета тепловой мощности системы отопления используется коэффициент 0,8.
  • Если соотношение располагается в диапазоне 10-19%, то применяется коэффициент 0,9.
  • При 20% — 1,0.
  • При 30% —2.
  • При 40% — 1,4.
  • При 50% — 1,5.

И это только окна. А есть еще влияние материалов, которые использовались в строительстве дома, на тепловые нагрузки. Расположим их в таблице, где стеновые материалы будут располагаться с уменьшением тепловых потерь, а значит, их коэффициент будет также снижаться:

Вид строительного материала

Как видите, разница от используемых материалов существенная. Поэтому еще на стадии проектирования дома необходимо точно определиться с тем, из какого материала он будет возводиться.

Конечно, многие застройщики строят дом на основе бюджета, выделенного на строительство. Но при таких раскладках стоит пересмотреть его. Специалисты уверяют, что лучше вложиться первоначально, чтобы впоследствии пожинать плоды экономии от эксплуатации дома.

Тем более что система отопления зимой составляет одну из главных статей расхода.

ЭТО ИНТЕРЕСНО:  Как подключить двухконтурный котел

Размеры комнат и этажность здания

Схема системы отопления

Итак, продолжаем разбираться в коэффициентах, влияющих на формулу расчета тепла. Как влияют размеры помещения на тепловые нагрузки?

  • Если высота потолков в вашем доме не превышает 2,5 метра, то в расчете учитывается коэффициент 1,0.
  • При высоте 3 м уже берется 1,05. Незначительная разница, но она существенно влияет на тепловые потери, если общая площадь дома достаточно велика.
  • При 3,5 м — 1,1.
  • При 4,5 м —2.

А вот такой показатель, как этажность постройки, влияет на теплопотери помещения по-разному. Здесь необходимо учитывать не только количество этажей, но и место помещения, то есть, на каком этаже оно расположено. К примеру, если это комната на первом этаже, а сам дом имеет три-четыре этажа, то для расчета используется коэффициент 0,82.

При перемещении помещения в верхние этажи повышается и показатель теплопотерь. К тому же придется учитывать чердак — утеплен он или нет.

Как видите, чтобы точно подсчитать тепловые потери здания, необходимо определиться с различными факторами. И их все обязательно надо учитывать. Кстати, нами были рассмотрены не все факторы, снижающие или повышающие тепловые потери.

Но сама формула расчета будет в основном зависеть от площади отапливаемого дома и от показателя, который называется удельным значением тепловых потерь. Кстати, в данной формуле оно стандартное и равно 100 Вт/м².

Все остальные составляющие формулы — коэффициенты.

Необходимость расчета тепловой мощности системы отопления

Потребность в вычислении тепловой энергии, необходимой для обогрева комнат и подсобных помещений, связана с тем, что нужно определить основные характеристики системы в зависимости от индивидуальных особенностей проектируемого объекта, включая: 

  • назначение здания и его тип;
  • конфигурацию каждого помещения;
  • количество жильцов;
  • географическое положение и регион, в котором находится населенный пункт;
  • прочие параметры. 

Расчет необходимой мощности отопления является важным моментом, его результат используют для вычисления параметров отопительного оборудования, которое планируют установить:

  1. Подбор котла в зависимости от его мощности. Эффективность функционирования отопительной конструкции определяется правильностью выбора нагревательного агрегата. Котел должен иметь такую производительность, чтобы обеспечить обогрев всех помещений в соответствии с потребностями людей, проживающих в доме или квартире, даже в наиболее холодные зимние дни. Одновременно при наличии у прибора избыточной мощности часть вырабатываемой энергии не будет востребована, а значит, некоторая сумма денег потратится напрасно. 
  2. Необходимость согласовывать подключение к магистральному газопроводу. Для присоединения к газовой сети потребуется ТУ. Для этого подают заявку в соответствующую службу с указанием предполагаемого расхода газа на год и оценкой тепловой мощности в сумме для всех потребителей. 
  3. Выполнение расчетов периферийного оборудования.  необходим для определения длины трубопровода и сечения труб, производительности циркуляционного насоса, типа батарей и т.д. 

Порядок вычислений при расчете потребляемого тепла

  • Q в данном случае — это общий объем энергии тепла;
  • V – показатель потребления горячей воды, который измеряется либо в тоннах, либо в кубических метрах;
  • T1 – температурный параметр горячей воды (измеряется в привычных градусах Цельсия). В данном случае более уместно будет брать в расчет ту температуру, которая характерна для определенного рабочего давления. Этот показатель имеет специальное название – энтальпия. Но в случае отсутствия требуемого датчика можно принять за основу ту температуру, которая будет максимально приближена к энтальпии. Как правило, ее средний показатель варьируется в пределах от 60 до 65°C;
  • T2 в этой формуле – температурный показатель холодной воды, который также измеряется в градусах Цельсия. Ввиду того, что попасть к трубопроводу с холодной водой весьма проблематично, подобные значения определяются постоянными величинами, которые отличаются в зависимости от погодных условий за пределами жилища. К примеру, в зимнее время года, то есть в самый разгар отопительного сезона, эта величина составляет 5°C, а летом, когда отопительный контур отключен – 15°C;

Источник: https://www.tproekt.com/formula-rasceta-teplovoj-energii-na-otoplenie/

Мощность котельной: установленная и тепловая, расчет мощности

Котельные для отопления и снабжения горячей водой жилых и производственных помещений часто строятся по блочно-модульной схеме: оборудование размещается в соединяющихся блоках, устойчивых к температурным перепадам и возгораниям. Чтобы получить разрешение на постройку этого сооружения, необходимо правильно выполнить расчеты мощности котельной.

Котельная, которая отапливает жилые помещения.

Расчет тепловой мощности котельной

Потребители обслуживаются котельными следующих типов:

  • местные (для одного или нескольких домов);
  • квартальные (для домов целого квартала);
  • районные (крупные сооружения).

Все котельные могут отапливаться следующими видами топлива:

  • твердым (древесиной, торфом, углем);
  • газообразным;
  • жидким (мазутом, нефтью, маслом, соляркой);
  • комбинированным.

Твердое топливо при горении выделяет газы и оставляет золу. Пеллетные котельные используют пеллеты, которые производят из остатков пиломатериалов (веток, опилок) и подсолнечной шелухи.

Использование твердого топлива требует оснащения котельных особыми колосниками, пропускающими золу. Древесина должна быть сухая, для сушки дров используются навесы. Лучше использовать дрова лиственных пород, т.к. хвойные поленья засоряют дымоходы продуктами горения.

Тепловую энергию для данного вида топлива рассчитывают так: на 1 м² площади здания должно приходиться 100 Вт/ч. Для дома площадью 100 м² мощность равна 10 кВт. Зная количество дней, в которые производится отопление, можно подсчитать общую тепловую мощность.

Котельные могут работать на сжиженном и магистральном газе. Для газовых котельных действуют особые требования укладки труб для обеспечения работы котлов (обвязки).

Простейший вариант расчета мощности отопительного газового оборудования — 1 кВт энергии на 10 м² площади. Кроме этого, учитывают площадь помещения, его расположение в той или иной климатической зоне, теплопотери отапливаемого строения.

Точные расчеты могут выполнить специалисты-теплотехники. Они же помогут определить расход топлива за необходимый промежуток времени.

В отдаленных районах устанавливаются жидкостные котельные. Расход топлива для них измеряется следующим образом: 1 кг солярки дает 10 кВт.

Выделяемая тепловая энергия считается в мегаваттах (мВт) или гигакалориях (Гкал).

В комбинированных котельных в качестве топлива используются:

  • газ и солярка;
  • газ и мазут;
  • газ и нефть;
  • газ и отработанное масло.

Приоритетное и второстепенное топливо определяет владелец котельной. От выбранного вида теплоносителя зависит тип котлов.

При устройстве и эксплуатации отопительных котельных малой мощности для подсчета тепловой энергии учитывается несколько факторов:

  • износ отапливаемых зданий;
  • степень их утепленности;
  • размеры окон и дверей.

При эксплуатации в зданиях появляются места утечки тепла, которые можно найти с помощью тепловизора. При невозможности заделки этих мест увеличивают мощность котельной установки на 30% и более.

Расчет по площади

Потребление тепла рассчитывается по площади отапливаемых помещений. Считается нормой потребление 1 кВт тепла на 10 м² комнаты высотой до 2,7 м. Для расчета потребления всей тепловой энергии необходимо знать общую площадь строения.

Таким способом производится расчет производительности котлов в зависимости от площади здания.

Расчет по объему

Более точный метод расчета мощности учитывает объем зданий. Нормой является потребление 34 Вт тепла на 1 м³ объема помещения.

Что еще необходимо учесть при расчете

Предыдущие расчеты не дают точной оценки мощности котельной, необходимо учитывать и приготовление горячей воды. Мощность котлов необходимо увеличить примерно на 20% — столько тепла тратится на нагревание воды. Для частного дома лучше приобретать автоматические двухконтурные отопительные установки — они экономят потребляемое топливо, работают на обогрев помещения и на подготовку горячей воды.

Работу котлов на газе лучше измерять в м³/ч или в кг/ч, чтобы не путать электрическую энергию с тепловой. При этом следует помнить, что сгорание 0,112 м³ газа равно 1 кВт тепла.

Географическое расположение отапливаемого помещения тоже принимается во внимание. Для этого существуют карты с обозначением средних температур в разные времена года для разных местностей.

К расчетной цифре, установленной ранее, прибавляется взятый из карты коэффициент. Для климата средней полосы России он равен 1, для северных районов — от 1,5 до 2.

На этот коэффициент умножается цифра, полученная при измерении площади и объема отапливаемого помещения. Результатом будет мощность котлов, необходимая для данного региона.

Пример расчета потребления тепла в кирпичном доме в Сыктывкаре:

  • дом высотой 3 м;
  • площадь 100 м².

Вычисляем объем: 100 м² умножаем на 3 м, получаем 300 м³. 34 Вт умножаем на 300 м³, получаем 10,2 кВт. Населенный пункт находится в северной зоне, поэтому последнее число умножается на коэффициент 2. Результат — 20,4. К этому числу добавляется еще 20% на нагрев воды и 25% резервной мощности. Чтобы не допустить преждевременного износа оборудования, прибавляют еще 10% мощности. В результате получают полную мощность котельной.

Если отапливается несколько домов, нужно посчитать затрачиваемую энергию для каждого из них и сложить полученные значения. Эта сумма будет обозначать необходимую тепловую мощность.

Для более точного расчета специалисты пользуются формулами, которые включают в себя:

  • коэффициенты теплопотерь;
  • количество людей в помещении;
  • виды теплоизоляционных материалов;
  • разность наружных и внутренних температур.

Чем крупнее отапливаемые объекты, тем больше факторов учитывают.

Источник: https://kotle.ru/kotelnye/moshhnost-kotelnoj

В чем измеряется тепловая энергия отопления

› Отопление

статьи

Тепловая энергия — это система измерения теплоты, которая была изобретена и используется еще два столетия назад. Основным правилом работы с данной величиной было то, что тепловая энергия сохраняется и не может просто исчезнуть, но может перейти в другой вид энергии.

Существует несколько общепринятых единиц измерения тепловой энергии. В основном их используют в промышленных отраслях, таких как энергетика. Внизу описаны самые распространенные из них:

  • Калория — единица измерения, не входящая в общую систему, но часто использующаяся для сравнения с другими параметрами. В основном исчисления производят в килокал, Мегакал, Гигакал;
  • Тонна пара — одна из специфичных и самых редко используемых величин, с помощью которых измеряют количество энергии тепла в особо больших объемах. Одна единица «тонны пара» равняется количеству пара, который можно получить из 1 тонны воды;
  • Джоуль — распространенная единица измерения из СИ, использующаяся для общего обозначения количества энергии в разных ее видах. Основными величинами являются кДж, МДж, ГДж;
  • кВт на час (Квт х ч) — основная единица измерения электрической энергии, используемая в частности странами СНГ.

Любая единица измерения, входящая в систему СИ, имеет предназначение в определении суммарного количества того или иного вида энергии, такого как выделения тепла или электроэнергия. Время проведения измерения и количество не влияют на эти величины, почему можно их использовать как для потребляемой, так и для уже потребленной энергии. Кроме того, любая передача и прием, а также потери тоже исчисляются в таких величинах.

Где применяют единицы измерения тепловой энергии

  1. Подсчет выработанной энергии пара в котельных за один сезон или год.
  2. Определение необходимого количества тепла для проведения нагрева определенного количества воды с конкретным температурным режимом.
  3. Полный подсчет количества тепловой энергии, которая служит для обеспечения нагревания горячей воды, отопительных сооружений и вентиляции помещений.
  4. В некоторых вариантах величину тепловой энергии используют для измерения объема природного газа. В таком случае учитывается способность определенного количества вещества производить тепло при сжигании.
  5. В катальнях зачастую используют данную величину для определения показателя используемой электроэнергии в отопительных сезонах.

Единицы измерения энергии, переведенные в тепловую

Для наглядного примера ниже приведены сравнения различных популярных показателей СИ с тепловой энергией:

  • 1 ГДж равен 0,24 Гкал, что в электрическом эквиваленте равняется 3400 миллионов кВт на час. В эквиваленте тепловой энергии 1 ГДж = 0,44 тонны пара;
  • В то же время 1 Гкал = 4,1868 ГДж = 16000 млн. кВт на час = 1,9 тонн пара;
  • 1 тонна пара равняется 2,3 ГДж = 0,6 Гкал = 8200 кВт на час.

В данном примере приводимая величина пара принята за испарение воды при достижении 100°С.

Чтобы провести расчеты количества тепла, используется следующий принцип: для получения данных о количестве тепла его используют в нагревании жидкости, после чего масса воды умножается на пророщенную температуру. Если в СИ масса жидкости измеряется килограммами, а температурные перепады в градусах Цельсия, то результатом таких расчетов будет количество теплоты в килокалориях.

Если есть необходимость в передаче тепловой энергии от одного физического тела другому, и вы хотите узнать возможные потери, то стоит массу получаемого тепла вещества умножить на температуру повышения, а после узнать произведение получаемого значения на «удельную теплоемкость» вещества.

Источник: https://biokamin-doma.ru/otoplenie/v-chem-izmeryaetsya-teplovaya-energiya-otopleniya.html

Расчет тепловой мощности для выбора нагревателя

Товар добавлен в корзину.

Итого:  Р Продолжить покупки Перейти в корзину

01.06.2015

Расчет тепловой мощности обогрева помещения

Для правильного выбора нагревателя, предлагаем вам ознакомиться с правилами расчета тепловой мощности, необходимой для вашего конкретного случая применения:

V x ∆T x K = ккал/ч

Обозначения:

V   — Объем обогреваемого помещения (длина х ширина х высота), м3

∆Т — Разница между ˚t воздуха вне помещения и необходимой ˚t внутри помещения, ˚С

К   — Коэффициент тепловых потерь (зависит от типа конструкции и изоляции помещения):

Без теплоизоляции ( К=3,0-4,0 ) — Деревянная конструкция или конструкция из гофрированного металлического листа.

Простая теплоизоляция ( К=2,0-2,9 ) — Здание с одинарной кирпичной кладкой, упрощенная конструкция окон и крыши.

Средняя теплоизоляция ( К=1,0-1,9 ) — Стандартная конструкция. Двойная кирпичная кладка, крыша со стандартной кровлей, небольшое кол-во окон.

Высокая теплоизоляция ( К=0,6-0,9 ) — Кирпичные стены с двойной теплоизоляцией, небольшое кол-во окон со сдвоенными рамами, толстое основание пола, крыша из высококачественного теплоизоляционного материала.

Пример:

Объем помещения: 5 х 16 х 2,5 = 200

∆Т: Температура наружного воздуха -20 °С. Требуемая температура внутри помещения +25 °С. Разница между тем­пературами внутри и снаружи +45 °С.

К:  Рассмотрим вариант со средней теплоизоляцией (1-1,9). Выберите то значение, которое на ваш взгляд, наиболее соответствует вашему помещению. Чем хуже теплоизоляция, тем больший коэффициент нужно выбирать. Например 1,7.

Расчет: 200 х 45 х 1,7 = 15 300 ккал\ч

1 кВт = 860 ккал\ч, соответственно 15 300\860 = 17,8 кВт.

ВАЖНО! 

Газовые и дизельные калориферы прямого нагрева, можно использовать только в хорошо проветриваемых помещениях, или на открытых пространствах. Дизельные калориферы непрямого нагрева, можно использовать в закрытых помещениях, при условии отвода сгораемых газов за пределы помещения.

Таблица Мощности для помещений:

Расчет мощности можно сделать с помощью данной схемы (ВЫ можете скачать и распечать схему ниже)

Для определения необходимой мощности тепловой пушки или нагревателя воздуха нужно рассчитать минимальную нагревательную мощность для обогрева данного помещения по следующей формуле:

V х ΔT x k = ккал/ч, где:

  • V — объем обогреваемого помещения (длина, ширина, высота), м3;
  • ΔT — разница между температурой воздуха вне помещения и требуемой температурой воздуха внутри помещения, °C;
  • k — коэффициент рассеивания (теплоизоляции здания): k = 3,0-4,0 — без теплоизоляции (упрощённая деревянная конструкция или конструкция из гофрированного металлического листа); k = 2,0-2,9 — небольшая теплоизоляция (упрощённая конструкция здания, одинарная кирпичная кладка, упрощённая конструкция окон); k = 1,0-1,9 — средняя теплоизоляция (стандартная конструкция, двойная кирпичная кладка, небольшое число окон, крыша со стандартной кровлей);k = 0,6-0,9 — высокая теплоизоляция (улучшенная конструкция здания, кирпичные стены с двойной теплоизоляцией, небольшое число окон со сдвоенными рамами, толстое основание пола, крыша из высококачественного теплоизоляционного материала).
ЭТО ИНТЕРЕСНО:  Как запаять алюминиевый радиатор

Пример:

Объем помещения для обогрева (ширина 4 м, длина 12 м, высота 3 м): V = 4 x 12 x 3 = 144 м3.
Наружная температура -5°C. Требуемая температура внутри +18°C. Разница температур ΔT = 18°C — (-5 C) = 23°C.
k = 4 (здание с низкой изоляцией).

Расчет мощности:

144 м3 x 23°C x 4 = 13 248 ккал/ч — нужная минимальная мощность.

Принимается:

1 кВт = 860 ккал/ч;
1 ккал = 3,97 ВТЕ;
1 кВт = 3412 ВТЕ;
1 БТЕ = 0,252 ккал/ч.

Итого: 13 248 ккал/ч / 860 = 15,4 кВт — нужная минимальная мощность в кВт.

Теперь можно выбрать тип нагревателя.

Таблица тепловой мощности, необходимой для различных помещений

(разница температуры внутри помещения и наружной температуры — 30°С)

тепл. мощн., кВт объём помещения при хорошей теплоизоляции (новое здание), м3 объём помещения при плохой теплоизоляции (старое здание), м3 площадь теплицы из теплоизолированного стекла и с двойной фольгой, м2 площадь теплицы из обычного стекла с фольгой, м2
5 70 ÷ 150 60 ÷ 110 35 18
10 150 ÷ 300 130 ÷ 220 70 37
20 320 ÷ 600 240 ÷ 440 140 74
30 650 ÷ 1000 460 ÷ 650 210 110
40 1050 ÷ 1300 650 ÷ 890 300 150
50 1350 ÷ 1600 900 ÷ 1100 370 180
60 1650 ÷ 2000 1150 ÷ 1350 440 220
75 2100 ÷ 2500 1400 ÷ 1650 550 280
100 2600 ÷ 3300 1700 ÷ 2200 740 370
125 3400 ÷ 4100 2300 ÷ 2700 920 460
150 4200 ÷ 5000 2800 ÷ 3300 1100 550
200 5000 ÷ 6500 3400 ÷ 4400 1480 740

Ответ на вопрос : КУДА УХОДИТ ЛЕТО  ТЕПЛО?

Источник: https://www.invoz.ru/articles/raschet_teplovoi_moshnosti.html

Расчет тепловой мощности системы отопления

Отопительная система в частном доме – это, чаще всего, комплект автономного оборудования, использующего в качестве энерго- и теплоносителя наиболее соответствующие конкретному региону вещества.

Поэтому для каждой конкретной схемы отопления требуется индивидуальный расчет тепловой мощности системы отопления, который учитывает множество факторов, таких, как минимальный расход тепловой энергии для дома, расход тепла для помещений – всех и каждого, помогает определить расход энергоносителей в сутки и за время отопительного сезона, и т.д.Общие тепловые потери в доме

Формулы и коэффициенты для теплового расчета

Номинальная тепловая мощность системы отопления для частного объекта определяется по формуле (все результаты выражаются в кВт):

  • Q = Q1 x b1 x b2 + Q2 – Q3; где:
  • Q1 – общие потери тепла в здании согласно расчетам, кВт;
  • b1 – коэффициент дополнительной тепловой энергии от радиаторов сверх того, что показал расчёт. Значения коэффициента отражены в таблице ниже:

Таблица коэффициента отдачи тепла для отопительных приборов в доме

 

  • b2 – коэффициент дополнительных тепловых потерь радиаторами, установленными у внешних стен без экранирующих кожухов. Показатели коэффициента отражены в таблице ниже:

Таблица коэффициента потерь тепла для наружного отопительного оборудования

 

  • Q2 – теплопотери в трубопроводах, уложенных в неотапливаемом пространстве;
  • Q3 – дополнительное тепло от осветительных приборов, бытовых приборов и техники, жильцов, и т.д. Для жилых зданий Q3 принимается как 0,01 кВт/1 м2.

По какой формуле и как рассчитать потери тепла, обозначаемые как Q1? Эти параметры определяются следующим образом: Q1 = (Qa + Qb), где:

Qa– тепловая энергия, проходящая через ограждения и наружные стены;

Qb– потери тепла при прогреве воздуха вентиляционной системы.

Значение Qa и Qb рассчитывается для каждого отдельно взятого помещения с подключенным отоплением.

Тепловая энергия Qa определяется по формуле:

  • Qa = 1 / R x A x (tb – tn) х (1 + Ʃß), где:
  • А – площадь ограждения (наружной стены) в м2;
  • R – теплопередача ограждения в м2•°С/Вт (справочная информация в СНиП II-3-79).

Точки тепловых потерь в отапливаемом здании

Сопротивление теплопередаче для подвального пола и цокольных стен рассчитывается по 2-х метровым участкам, проходящим параллельно наружным стенам дома. Формула подсчётов:

  • R = RC + δ / λ, где:
  • RC – сопротивление теплоотдаче, м2•°С/Вт:
    • 2,1 – для 1 тепловой зоны;
    • 4,3 – для 2 тепловой зоны;
    • 8,6 – для 3 тепловой зоны;
    • 14,2 – для 4 зоны поверхности пола;

Теплопотери по зонам пола

 

  • δ – толщина утеплителя в метрах, которая принимается в расчет при δ ≤ 1,2Вт/м2 0С;
  • tb – температура внутри помещения;
  • tn – температура снаружи;
  • n – коэффициент, зависящий от взаимоположения наружных поверхностей относительно воздушных потоков снаружи (справочная информация в СНиП II-3-79);
  • ß – дополнительные теплопотери:
  • для внешних вертикальных и диагональных поверхностей, установленных в направлении январского ветра со скоростью ≥ 4,5 м/с и цикличностью ≥ 15% (СНиП 2.01.01-82). Значение 0,05 для скорости ≤ 5 м/с, значение 0,10 для скорости ветра ≥ 5 м/с. Для типовых проектов домов при типовом проектировании коэффициент ß = 0,05 для всего объекта;
  • для внешних вертикальных и диагональных поверхностей высотных домов значение ß = 0,2 для 1 и 2 этажа, ß = 0,15 для 3 этажа; ß = 0,10 для 4 этажа при количестве этажей в доме ≥ 16, для 10-15 – этажных домов ß = 0,10 для 1 и 1 этажа, ß = 0,05 -для 3 этажа.

Потери тепла через пол и фундамент первого этажа дома

Потери дополнительного тепла Q3 выводятся по формуле: Qb= 0,337 x An x h x (tb – tn) x 10-3 для помещения с применением отопительного оборудования и окнами, где:

  • An – площадь поверхности пола;
  • H – высота помещения.

Помещения с вытяжкой или принудительной вентиляцией должны иметь подогрев воздуха. Проводя расчет отопления, разрешено подогревать наружные воздушные потоки, поступающие в помещения, если объем потока не превышает 2-х обменов за 60 минут.

Теплопотери Qb при нагреве наружных потоков воздуха от дверей, рассчитываются так:

  • Q3 = 0,7 X B х (H / 0,8P) х (tb – tn) х 10-3, где:
  • H – высота дома:
  • Р – количество жильцов;
  • В – коэффициент для тамбуров и холлов. Для 1 тамбура В = 1, для 2 тамбуров В = 0,6.

Рассчитать тепловую мощность для прогрева наружных потоков от дверей лоджий можно по формуле Q3 = 0,7 X B х (H / 0,8P) х (tb – tn) х 10-3, если количество жильцов Р = 0.

Тепловые потери от дверей дома

Тепловая температурная утечка от холлов, вестибюлей, коридоров с воздушной тепловой завесой, от лестничных клеток и помещений с принудительной вентиляцией не учитывает параметр Qb.

Потери тепловой энергии Qb на прогрев воздушных потоков от наружных гаражных ворот, вычисляются, принимая во внимание скорость ветра и время открывания воротных створок.

Потери тепловой энергии Q2 от трубопроводов, проложенных в помещениях без отопления, определяется следующим образом:

  • Q2 = Ʃql x 10-3, где:
  • l – длина отрезков теплоизолированных трубопроводов с разным диаметром, уложенных в неотапливаемых помещениях;
  • q – нормативная линейная плотность теплого воздушного потока изолированного трубопровода.

Толщина теплоизоляции δиз вычисляется так:

δиз = 0,5 х d x (B – l) и ln B = 2 x ∏ x λ (∆tср / q – 0,1 | [∏ x (d / 0,2])), где:

d – внешний диаметр трубопровода;

λ – коэффициент теплопроводности утеплителя;

∆tср –разность температуры уличного воздуха и теплоносителя за отопительный период.

Таблица тепловой мощности

Проводя тепловой расчет системы отопления, необходимо принимать во внимание следующие параметры жилого здания:

  1. Функциональное назначение и геометрические размеры жилья;
  2. Архитектурные особенности в виде габаритов арок, размеров дверных и оконных проемов, площадь всех поверхностей здания;
  3. Соблюдение требований по температурному режиму, отраженному в СНиП 2.04.05-91, для каждого отдельного помещения дома;
  4. Стройматериалы и конструктивные особенности кровли, пола, стен и потолка, включая наружное и внутреннее утепление;
  5. Функциональное назначение жилых и нежилых помещений и пристроек;
  6. Специфическая информация (длительность отопительного периода, количество жильцов, и т.д.);
  7. Число точек разбора ГВС.

Проведение подобных вычислений должно учитывать все эти значения и факторы. Для более точных вычислений можно воспользоваться специальной программой – калькулятор, или онлайн-сервисами. Чтобы зарезервировать тепловую мощность для непредвиденных случаев, (например, аномально холодная зима), к результатам вычислений прибавляют 10-25% запаса.Назначение тепловых вычислений

Необходимость тепловых расчетов для всего дома и отдельных отапливаемых помещений обосновывается экономией энергоносителей и семейного бюджета. В каких случаях проводят подобные вычисления:

  1. Чтобы точно вычислить мощность котельного оборудования для наиболее эффективного обогрева всех подключенных к отоплению помещений.

    Приобретая котел без предварительных расчетов можно установить совершенно неподходящее по параметрам оборудование, которое не справится со своей задачей, и деньги будут потрачены впустую. Тепловые параметры всей системы отопления определяются, как результат сложения всех расходов тепловой энергии в подключенных и неподключенных к котлу отопления помещениях, если трубопровод проходит по ним.

    Также необходим запас мощности по расходам тепла, чтобы уменьшить износ отопительного оборудования и минимизировать появление аварийных ситуаций при высоких нагрузках в морозы;

  2. Расчеты тепловых параметров системы отопления необходимы для получения на руки технического удостоверения (ТУ), без которого не получится согласовать проект по газификации частного дома, так как в 80% случаев монтажа автономного отопления устанавливают газовый котел и соответствующее оборудование. Для остальных типов отопительных агрегатов технические условия и документация на подключение не нужны. Для газового оборудования необходимо знать годовой расход газа, и без соответствующих вычислений точную цифру получить не удастся;
  3. Получить тепловые параметры отопительной системы также нужно для покупки правильного оборудования – труб, радиаторов, фитингов, фильтров, и т.д.

Расчетные данные отопительных приборов

Точные расчеты мощности и расхода тепла для жилых помещений

Уровень и качество утепления зависят от качества работ и архитектурных особенностей помещений ми всего дома. Бо́льшая часть тепловых потерь (до 40%) при отоплении здания происходит через поверхность наружных стен, через окна и двери (до 20%), а также через кровлю и пол (до 10%). Оставшиеся 30% тепла могут уходить из дома через вентиляционные отверстия и каналы.

Для получения уточненных результатов применяют следующие справочные коэффициенты:

  1. Q1 – используется при расчетах для помещений с окнами. Для ПВХ окон с двухкамерными стеклопакетами Q1=1, для окон с однокамерным остеклением Q1 =1,27, для трехкамерного окна Q1 =0,85;
  2. Q2 – используется при расчетах коэффициента утепления внутренних стен.

    Для пенобетона Q2 = 1, для бетона Q2 – 1,2, для кирпича Q2= 1,5;

  3. Q3 применяется при расчетах соотношений площадей пола и оконных проемов. Для 20% площади остекления стены коэффициент Q3 = 1, для 50% остекления Q3 принимается, как 1,5;
  4. Значение коэффициента Q4 варьируется в зависимости от минимальной уличной температуры за весь годовой отопительный период.

    При наружной температуре -200C Q4 = 1, далее – для каждых 50C в ту или иную сторону добавляют или отнимают 0,1;

  5. Коэффициент Q5 применяется при расчетах, учитывающих общее количество стен здания.

    При одной стене в расчетах Q5 = 1, при 12-х и 3-х стенах Q5 = 1,2, для 4-х стен Q5 = 1,33;

  6. Q6 используют, если при расчетах потерь тепла учитывается функциональное назначение помещения под той комнатой, для которой делаются вычисления.

    Если наверху находится жилой этаж, то коэффициент Q6 = 0,82, если отапливаемый или утепленный чердак, то Q6 – 0,91, для холодного чердачного помещения Q6 = 1;

  7. Параметр Q7 колеблется в зависимости от высоты потолков обследуемого помещения. При высоте потолка ≤ 2,5 м коэффициент Q7 = 1,0, если потолок выше 3-х м, то Q7 принимается, как 1,05.

После определения всех необходимых поправок проводят расчет тепловой мощности и тепловых потерь в отопительной системе для каждого отдельно взятого помещения по следующей формуле:

  • Qi = q х Si х Q1 х Q2 х Q3 х Q4 х Q5 х Q6 х Q7, где:
  • q =100 Вт/м²;
  • Si – площадь обследуемого помещения.

Результаты параметров будут увеличиваться при применении коэффициентов ≥ 1, и уменьшаться, если Q1- Q7 ≤1. После расчетов конкретного значения результатов расчетов для конкретного помещения можно рассчитать общую тепловую мощность частного автономного отопления по следующей формуле:

Q = Σ х Qi, (i = 1N), где: N – общее количество помещений в здании.

Источник: http://jsnip.ru/vodosnabzheniya/raschet-teplovoj-moshhnosti.html

Тепловая мощность: характеристики, формулы потерь, предназначение, факторы

Эффективность работы отопительного оборудования напрямую связана с показателем тепловой мощности. От нее зависит комфортность и уют в помещении, обогреваемом посредством газа, дров или электричества. Поэтому пользователю важно знать, что собой представляет эта физическая величина и как она рассчитывается в каждом конкретном случае.

Определение понятия тепловой мощности

Тепловая мощность оборудования напрямую зависит от количества потребляемой энергии котлом

Под мощностью тепловыделения понимается количество теплоты, образующееся при преобразовании исходного носителя в энергию обогрева. Этот показатель отличен по величине для разных видов энергоносителей и рассчитывается для каждого из них индивидуально. Для газовых котлов он зависит от объема природного или сжиженного газа, подводимого к горелке в единицу времени.

При рассмотрении электрических аналогов этот параметр напрямую связан с мощностью электроэнергии, потребляемой агрегатом от сети 220 или 380 Вольт и его тепловым КПД. Соотношение тепловых и электрических мощностей задается специальными формулами, переводящими одно значение в другое.

Необходимые характеристики

Главным узлом в отопительном котле является теплообменник

Расчет тепловой мощности очень важен, так как его результаты необходимы для определения параметров выбираемого образца отопительного оборудования. К последним традиционно относятся:

  • электрическая мощность агрегата для энергозависимых моделей;
  • эффективность преобразования (или КПД котла);
  • производительность, определяемая как количество тепла, формируемое устройством в единицу времени.

Модели котлов, подключаемых к электросети, относятся к оборудованию с потребляемой мощностью системы отопления, приводимой к количеству сжигаемого твердого или газообразного топлива. Для независимых от электричества образов этот параметр определяется напрямую – без перерасчета на затраченную электроэнергию.

Эффективность работы любого отопительного агрегата в значительной мере зависит от правильности выбора узла, обеспечивающего преобразование тепловой энергии (теплообменника). Грамотное решение этого вопроса позволяет получить требуемую теплопроизводительность и комфортно чувствовать себя в доме даже в самые морозные дни.

Избытки по тепловой мощности нежелательны, поскольку в этом случае часть расходуемых средств тратится впустую.

Факторы, влияющие на потребность в тепле

Тепловая мощность зависит от площади помещения, климата региона, степени утепления здания

К основным факторам, определяющим потребность в тепловой энергии для помещения, относят:

  • полный объем нагреваемых пространств;
  • тип и качество утеплительного материала;
  • климатическая зона, в которой располагается здание.

От объема помещения зависит количество воздушного пространства, нуждающегося в обогреве. Чем объемнее отапливаемое помещение, тем больше тепла потребуется для поддержания нужного микроклимата. При одинаковой высоте потолков (порядка 2,5 метров) обычно применяется упрощенный расчет, при котором за основу берется площадь комнаты.

О качестве утепления судят по способам теплоизоляции стен, а также по площади и комплекту окон и дверей. Учитывается также вид остекления – простой и тройной стеклопакет различны по тепловым потерям. Влияние климатического фактора сказывается при прочих равных условиях и учитывается как разность температур на улице и в комнате, где установлен котел.

Для прибора (батареи отопления)

Степень теплопроводности металлов – из некоторых изготавливают радиаторы

При рассмотрении факторов, влияющих на мощность нагрева радиаторов отопления, выделяются три основных:

  • показатель, соответствующий разнице нагрева теплоносителя и окружающей воздушной среды – с его повышением увеличивается тепловая мощность;
  • площадь поверхности, отдающей тепло;
  • теплопроводность используемого материала.

В этом случае наблюдается та же линейная зависимость: с увеличением поверхности батареи возрастает и величина тепловой отдачи. По этой причине многие современные отопительные радиаторы дополняются специальными алюминиевыми ребрами, повышающими общую теплоотдачу.

Зачем нужен расчет мощностного показателя

Мощность котла выбирают по предполагаемому количеству приборов, которые придется обслуживать

Потребность в определении мощности объясняется тем, что основные характеристики котла зависят от следующих факторов:

  • особенности конструкции и назначение отапливаемого объекта;
  • размеры и форма каждого помещения;
  • общее число жильцов;
  • месторасположение на карте страны.

Расчетная мощность теплопередачи используется для определения параметров котельного оборудования, планируемого к установке именно в этом помещении.

Будущий котел должен обладать производительностью, достаточной для его обогрева даже в самые холодные зимние дни. Также важно предусмотреть возможность согласованного подключения агрегата к магистральному трубопроводу.

Проведенные расчеты помогут определиться с его длиной и типоразмером труб, а также с типом радиаторов и параметрами циркуляционного насоса.

Расчет тепловой мощности

Для оценки тепловой энергии существует формула определения мощности через количество теплоты: N = Q/Δ t, где Q – это количество теплоты, выраженное в джоулях, а Δ t – время выделения энергии в секундах.

При оценочных расчетах также используется специальный коэффициент (КПД), указывающий на объем израсходованного тепла. Он находится как отношение полезной энергии к мощности тепловых потерь и выражается в процентах.

Объем затраченной энергии для помещений зависит от их строительных особенностей. Тот же показатель для батарей определяется используемыми при их изготовлении материалами и особенностями конструкции.

Более точный тепловой расчет

Грамотный выбор нагревательного оборудования возможен лишь после ознакомления с порядком расчета тепловой мощности, требуемой в каждом конкретном случае. Формула, используемая для его точного определения, выглядит так: P=V∆TK= ккал/час:

  • V – объем обогреваемого помещения, измеряемый в метрах кубических.
  • ∆Т – разница между температурой воздуха вне и внутри помещения.
  • К – коэффициент потерь тепла.

Последняя величина зависит от материала стен. На основании проведенных специалистами измерений для неутепленной деревянной конструкции она составляет 3,0-4,0. Точные значения К для различных вариантов утепления приведены ниже:

  • Для зданий из одинарной кирпичной кладки и с упрощенными конструкциями окон и крыши (так называемая “простая” теплоизоляция) К=2,0-2,9.
  • Утепление среднего качества (К=1,0-1,9). Это типовая конструкция, под которой понимается двойная кладка, крыша с обычной кровлей, ограниченное количество окон.
  • Высококачественное утепление (К=0,6-0,9), предполагающее кирпичные стены с усиленной теплоизоляцией, малое число окон со сдвоенными рамами, прочное основание пола и крышу с надежными теплоизоляторами.

В качестве примера будет рассмотрен точный расчет мощности для нагреваемого помещения объемом 5 х 16 х 2,5 = 200 метров кубических. ∆Т определяется как разница показателя снаружи -20 °С и внутри помещения +25 °С. Принимается вариант со средней удельной теплоизоляцией (К=1-1,9). По усредненным условиям эксплуатации берем 1,7. Рассчитываем: 200 х 45 х 1,7 = 15 300 ккал\час. Исходя из того, что 1 кВт = 860 ккал\час, в итоге имеем: 15 300\860 = 17,8 кВт.

Источник: https://StrojDvor.ru/otoplenie/raschet-potreblyaemoj-moshhnosti-sistemy-otopleniya/

Тепловая мощность – формула расчета и сферы применения

С теплотехническими расчётами приходится сталкиваться владельцам частных домов, квартир или любых других объектов. Это основа основ проектирования зданий.

Понять суть этих расчётов в официальных бумагах, не так сложно, как кажется.

Для себя также можно научиться выполнять вычисления, чтобы решить, какой утеплитель применять, какой толщины он должен быть, какой мощности приобретать котёл и достаточно ли имеющихся радиаторов на данную площадь.

Ответы на эти и многие другие вопросы можно найти, если понять, что такое тепловая мощность. Формула, определение и сферы применения – читайте в статье.

Что такое тепловой расчет?

Если говорить просто, тепловой расчёт помогает точно узнать, сколько тепла хранит и теряет здание, и сколько энергии должно вырабатывать отопление, чтобы поддерживать в жилье комфортные условия.

Оценивая теплопотери и степень теплоснабжения, учитываются следующие факторы:

  1. Какой это объект: сколько в нём этажей, наличие угловых комнат, жилой он или производственный и т. д.
  2. Сколько человек будет «обитать» в здании.
  3. Важная деталь – это площадь остекления. И размеры кровли, стен, пола, дверей, высота потолков и т. д.
  4. Какова продолжительность отопительного сезона, климатические характеристики региона.
  5. По СНиПам определяют нормы температур, которые должны быть в помещениях.
  6. Толщина стен, перекрытий, выбранные теплоизоляторы и их свойства.

Могут учитываться и другие условия и особенности, например, для производственных объектов считаются рабочие и выходные дни, мощность и тип вентиляции, ориентация жилья по сторонам света и др.

Как умудрялись обходиться без тепловых расчётов строители прошлого?

Сохранившиеся купеческие дома показывают, что всё делалось просто с запасом: окна поменьше, стены – потолще. Получалось тепло, но экономически не выгодно.

Теплотехнический расчёт позволяет строить наиболее оптимально. Материалов берётся ни больше – ни меньше, а ровно столько, сколько нужно. Сокращаются габариты строения и расходы на его возведение.

Вычисление точки росы позволяет строить так, чтобы материалы не портились как можно дольше.

Для определения необходимой мощности котла также не обойтись без расчётов. Суммарная мощность его складывается из затрат энергии на обогрев комнат, нагрев горячей воды для хозяйственных нужд, и способности перекрывать теплопотери от вентиляции и кондиционирования. Прибавляется запас мощности, на время пиковых холодов.

При газификации объекта требуется согласование со службами. Рассчитывается годовой расход газа на отопление и общая мощность тепловых источников в гигакалориях.

Нужны расчёты при подборе элементов отопительной системы. Обсчитывается система труб и радиаторов – можно узнать, какова должна быть их протяжённость, площадь поверхности. Учитывается потеря мощности при поворотах трубопровода, на стыках и прохождении арматуры.

Расчет тепловой мощности: формула

Рассмотрим формулу и приведем примеры, как произвести расчет для зданий с разным коэффициентом рассеивания.

Vx(дельта)TxK= ккал/ч (тепловая мощность), где:

  • Первый показатель «V» – объем рассчитываемого помещения;
  • Дельта «Т» – разница температур – это та величина, которая показывает насколько градусов внутри помещения теплее, чем снаружи;
  • «К» – коэффициент рассеивания (его еще называют «коэффициент пропускания тепла»). Величина берется из таблицы. Обычно цифра колеблется от 4 до 0,6.

Примерные величины коэффициента рассеивания для упрощенного расчёта

  • Если это неутепленный металлопрофиль или доска то «К» будет = 3 – 4 единицы.
  • Одинарная кирпичная кладка и минимальное утепление – «К» = от 2 до 3-ёх.
  • Стена в два кирпича, стандартное перекрытие, окна и
  • двери – «К» = от 1 до 2.
  • Самый теплый вариант. Стеклопакеты, кирпичные стены с двойным утеплителем и т. п. – «К» = 0,6 – 0,9.

Более точный расчет можно произвести, высчитывая точные размеры отличающихся по свойствам поверхностей дома в м2 (окна, двери и т. д.), производя расчёт для них отдельно и складывая получившиеся показатели.

Пример расчета тепловой мощности

Возьмем некое помещение 80 м2 с высотой потолков 2,5 м и посчитаем, какой мощности котел нам потребуется для его отопления.

Вначале высчитываем кубатуру: 80 х 2,5 = 200 м3. Дом у нас утеплен, но недостаточно – коэффициент рассеивания 1,2.

Морозы бывают до -40 °C, а в помещении хочется иметь комфортные +22 градуса, разница температур (дельта «Т») получается 62 °C.

Подставляем в формулу мощности тепловых потерь цифры и перемножаем:

200 х 62 х 1,2 = 14880 ккал/ч.

Полученные килокалории переводим в киловатты, пользуясь конвертером:

  • 1 кВт = 860 ккал;
  • 14880 ккал = 17302,3 Вт.

Округляем в большую сторону с запасом, и понимаем, что в самый сильный мороз -40 градусов нам потребуется 18 кВт энергии в час.

Можем посчитать теплопотери в Вт на каждый м2 стен и потолка. Высота потолков известна 2,5 м. Дом 80 м2 – это может быть 8 х 10 м.

Умножаем периметр дома на высоту стен:

(8 + 10) х 2 х 2,5 = 90 м2 поверхности стены + 80 м2 потолок = 170 м2 поверхности, контактирующей с холодом. Теплопотери, высчитанные нами выше, составили 18 кВт/ч, делим поверхность дома на расчетную израсходованную энергию получаем, что 1 м2 теряет примерно 0,1 кВт или 100 Вт ежечасно при температуре на улице -40 °C, а в помещении +22 °С.

Эти данные могут стать основой для расчёта требуемой толщины утеплителя на стены.

Приведем другой пример расчета, он в некоторых моментах сложнее, но более точный.

Формула:

Q = S x (дельта)T / R:

  • Q– искомая величина теплопотерь дома в Вт;
  • S– площадь охлаждающих поверхностей в м2;
  • T– разница температур в градусах Цельсия;
  • R– тепловое сопротивление материала (м2 х К/Вт) (Метры квадратные умноженные на Кельвин и делёный на Ватт).

Итак, чтобы найти «Q» того же дома, что и в примере выше, подсчитаем площадь его поверхностей «S» (пол и окна считать не будем).

  • «S» в нашем случае = 170 м2, из них 80 м2 потолок и 90 м2 – стены;
  • T = 62 °С;
  • R– тепловое сопротивление.

Ищем «R» по таблице тепловых сопротивлений или по формуле. Формула для расчета по коэффициенту теплопроводности такая:

R= H/ К.Т. (Н – толщина материала в метрах, К.Т. – коэффициент теплопроводности).

В этом случае, дом у нас имеет стены в два кирпича обшитые пенопластом толщиной 10 см. Потолок засыпан опилками толщиной 30 см.

Из таблицы коэффициентов теплопроводности (измеряется Вт / (м2 х К) Ватт делёный на произведение метра квадратного на Кельвин). Находим значения для каждого материала, они будут:

  • кирпич – 0,67;
  • пенопласт – 0,037;
  • опилки – 0,065.

Подставляем данные в формулу (R= H/ К.Т.):

  • R (потолка 30 см толщиной) = 0,3 / 0,065 = 4,6 (м2 х К) / Вт;
  • R (кирпичной стены 50 см) = 0,5 / 0,67 = 0,7 (м2 х К) / Вт;
  • R (пенопласт 10 см) = 0,1 / 0,037 = 2,7 (м2 х К) / Вт;
  • R (стен) = R(кирпич) + R(пенопласт) = 0,7 + 2,7 = 3,4 (м2 х К) / Вт.

Теперь можем приступить к расчету теплопотерь «Q»:

  • Q для потолка = 80 х 62 / 4,6 = 1078,2 Вт.
  • Q стен = 90 х 62 / 3,4 = 1641,1 Вт.
  • Остается сложить 1078,2 + 1641,1 и перевести в кВт, получается (если сразу округлить) 2,7 кВт энергии за 1 час.

Можно обратить внимание, насколько большая разница получилась в первом и втором случае, хотя объём домов и температура за окном в первом и втором случае были совершенно одинаковыми.

Всё дело в степени утомлённости домов (хотя, конечно, данные могли быть и иными, если бы мы рассчитывали пол и окна).

Заключение

Приведённые формулы и примеры показываю, что при теплотехнических расчётах очень важно учитывать как можно больше факторов, влияющих на теплопотери. Сюда входит и вентиляция, и площадь окон, степень их утомлённости и т. д.

А подход, когда на 10 м2 дома берётся 1 кВт мощности котла – слишком приблизительный, чтобы всерьёз опираться на него.

на тему

Источник: https://microklimat.pro/sistemy-otopleniya/raschet-sistem-otopleniya/teplovaya-moshhnost-formula.html

Тепловая мощность и суммарные потери теплоэнергии

Для создания комфорта в жилых и производственных помещениях выполняют составление теплового баланса и определяют коэффициент полезного действия (КПД) отопителей. Во всех расчётах применяется энергетическая характеристика, позволяющая связывать нагрузки источников обогрева с расходными показателями потребителей — тепловая мощность. Вычисление физической величины производится по формулам.Для вычисления тепловой мощности используются специальные формулы

Эффективность нагревателей

Мощность — это физическое определение скорости передачи или потребления энергии. Она равна отношению количества работы за определённый промежуток времени к этому периоду. Нагревательные устройства характеризуются по расходу электричества в киловаттах.

Для сопоставления энергий различного рода введена формула тепловой мощности: N = Q / Δ t, где:

  1. Q — количество теплоты в джоулях;
  2. Δ t — интервал времени выделения энергии в секундах;
  3. размерность полученной величины Дж / с = Вт.

В этом видео вы узнаете, как рассчитать количество теплоты:

Для оценки эффективности работы нагревателей используют коэффициент, указывающий на количество израсходованного по назначению тепла — КПД. Определяется показатель делением полезной энергии на затраченную, является безразмерной единицей и выражается в процентах.

По отношению к разным частям, составляющим окружающую среду, КПД нагревателя имеет неравные значения. Если оценивать чайник как нагреватель воды, его эффективность составит 90%, а при использовании его в качестве отопителя комнаты коэффициент возрастает до 99%.

Объяснение этому простое: из-за теплообмена с окружением часть температуры рассеивается и теряется. Количество утраченной энергии зависит от проводимости материалов и других факторов. Можно рассчитать теоретически мощность тепловых потерь по формуле P = λ × S Δ T / h. Здесь λ – коэффициент теплопроводности, Вт/(м × К); S — площадь участка теплообмена, м²; Δ T — перепад температур на контролируемой поверхности, град. С; h — толщина изолирующего слоя, м.

Из формулы понятно, что для повышения мощности надо увеличить количество радиаторов отопления и площадь теплоотдачи. Уменьшив же поверхность контакта с внешней средой, минимизируют потери температуры в помещении. Чем массивнее стена здания, тем меньше будет утечка тепла.

Баланс отопления помещений

Подготовка проекта любого объекта начинается с теплотехнического расчёта, призванного решить задачу обеспечения сооружения отоплением с учётом потерь из каждого помещения. Сведение баланса помогает узнать, какая часть тепла сохраняется в стенах здания, сколько уходит наружу, объём потребной выработки энергии для обеспечения комфортного климата в комнатах.

Определение тепловой мощности необходимо для решения следующих вопросов:

  1. высчитать нагрузку отопительного котла, которая обеспечит обогрев, горячее водоснабжение, кондиционирование воздуха и функционирование системы проветривания;
  2. согласовать газификацию здания и получить технические условия на подключение к распределительной сети. Для этого потребуются объёмы годового расхода горючего и потребность в мощности (Гкал/час) тепловых источников;
  3. выбрать оборудование, необходимое для отопления помещений.

Не забываем про соответствующую формулу

Из закона сохранения энергии следует, что в ограниченном пространстве с постоянным температурным режимом должен соблюдаться тепловой баланс: Q поступлений — Q потерь = 0 или Q избыточное = 0, или Σ Q = 0.

Постоянный микроклимат поддерживается на одном уровне в течение отопительного периода в зданиях социально значимых объектов: жилых, детских и лечебных учреждениях, а также на производствах с непрерывным режимом работы.

Если потери тепла превышают поступление, требуется отапливать помещения.

Технический расчёт помогает оптимизировать расход материалов при строительстве, снизить затраты на возведение зданий. Определяется суммарная тепловая мощность котла сложением энергии на отопление квартир, нагрев горячей воды, компенсацию потерь вентиляции и кондиционирования, резерв на пиковые холода.

ЭТО ИНТЕРЕСНО:  Как включить газовый котел житомир
Понравилась статья? Поделиться с друзьями:
Климатические системы от А до Я
Как сделать дровницу на даче своими руками

Закрыть